Math 210A Lecture 3 Notes

Daniel Raban

October 3, 2018

1 The Yoneda Lemma

1.1 Two versions of the Yoneda lemma

Lemma 1.1 (Yoneda). Let \mathcal{C} be a small category, and let $h^{\mathcal{C}} : \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set})$ be $h^{\mathcal{C}}(A) = h^{A} = \operatorname{Hom}_{\mathcal{C}}(\cdot, A)$ and if $f : A \to B$, then $h^{\mathcal{C}}(f)_{X} : \operatorname{Hom}(X, A) \to \operatorname{Hom}(X, B)$ sends $(g : X \to A) \mapsto (f \circ g : X \to B)$. Then $h^{\mathcal{C}}$ is fully faithful.

Proof. To show that $h^{\mathcal{C}}$ is faithful, let $f, g : A \to B$, and suppose that $h^{\mathcal{C}}(f) = h^{\mathcal{C}}(g)$. Then $h^{\mathcal{C}}(f)A, h^{\mathcal{C}}(g)_A : \operatorname{Hom}(A, A) \to \operatorname{Hom}(A, B)$ maps $1_A \mapsto f \circ 1_A = f$ and $1_A \mapsto g \circ 1_A = g$. So f = g.

To show that $h^{\mathcal{C}}$ is full, let $\{\eta_X\}: h^A \to h^B$. We claim that $h^{\mathcal{C}}(\eta_A(1_A)) = \eta$.

$$\begin{array}{c} h^{A}(A) \xrightarrow{\eta_{A}} h^{B}(A) \\ \downarrow^{h^{A}(f)} \qquad \downarrow^{h^{B}(f)} \\ h^{A}(C) \xrightarrow{\eta_{C}} h^{B}(C) \end{array}$$

This is

$$\begin{array}{ccc} \operatorname{Hom}(A,A) & \stackrel{\eta_A}{\longrightarrow} & \operatorname{Hom}(B,B) \\ & & & \downarrow^{h^A(f)} & & \downarrow^{h^B(f)} \\ \operatorname{Hom}(C,A) & \stackrel{\eta_C}{\longrightarrow} & \operatorname{Hom}(C,B). \end{array}$$

Since this diagram commutes, $\eta_C \circ h^A(f) = h^B(f) \circ \eta_A$. So they are equal on evaluation on an element. Then $\eta_C \circ h^A(f)[1_A] = h^B(f) \circ \eta_A[1_A]$, so $\eta_C[f] = \eta_A[1_A] \circ f$. In particular, $\eta = h^C(\eta_A[1_A])$.

Lemma 1.2 (Yoneda, strengthened). Let C be a small category, let $h^{C} : C \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set})$ be the Yoneda embedding, and let $F : \mathcal{C}^{op} \to \operatorname{Set}$. Then $\operatorname{Nat}(h^{A}, F)$ is in bijection with F(A).

Proof. Define Φ : Nat $(h^A, F) \to F(A)$ given by η_A : $h^A(A) \to F(A)$, which sends $1_A \mapsto \eta_A(1_A)$. Define $\Psi : F(A) \to \operatorname{Nat}(h^A, F)$. Then, for $x \in F(A), \Psi(x)_B : h^A(B) = \operatorname{Hom}(B, A) \to F(B)$ is $\Psi(x) = \operatorname{ev}_x \circ F$.

We claim that $\Phi \circ \Psi$ is the identity on F(A). Let $x \in F(A)$. Then $\Phi(\Psi(x)) = \Phi(\operatorname{ev}_x \circ F) = \operatorname{ev}_x \circ 1_{F(A)} = x$. $(\Psi \circ \Phi)(\eta) = \Psi(\eta_A(1_A)) = \operatorname{ev}_{\eta_A(1_A)} \circ F$. Let $f : B \to A$. Then

$$\begin{array}{ccc} \operatorname{Hom}(A,A) & \stackrel{\eta_A}{\longrightarrow} & F(A) \\ & & \downarrow^{h^A(f)} & & \downarrow^{F(f)} \\ \operatorname{Hom}(B,A) & \stackrel{\eta_B}{\longrightarrow} & F(B). \end{array}$$

So $F(f) \circ \eta_A = \eta_B \circ h^A(f)$, which means $F(f) \circ \eta_A(1_A) = \eta_B \circ h^A(f)(1_A)$. The left hand side is $\Phi \circ \Phi(\eta)_B[f]$, and the right hand side is $\eta_B(f)$. Therefore, $\Psi \circ \Phi(\eta) = \eta$.

This form of the Yoneda lemma implies the previous version.

Corollary 1.1 (Yoneda lemma). Let \mathcal{C} be a small category, and let $h^{\mathcal{C}} : \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set})$. Then $h^{\mathcal{C}}$ is fully faithful.

Proof. Let $B \in \text{Obj}(\mathcal{C})$. Consider $F = h^B - \text{Hom}_{\mathcal{C}}(\cdot, B)$. Then $\text{Nat}(h^A, h^B)$ is in bijection (via F) with $h^B(A) = \text{Hom}_{\mathcal{C}}(A, B)$.

1.2 Partially ordered sets

Definition 1.1. A partially ordered set (poset) is a set S with a relation \leq on S such that

- 1. $x \leq x$ for all $x \in S$,
- 2. if $x \leq y$ and $y \leq x$, then x = y,
- 3. if $x \leq y$ and $y \leq z$, then $x \leq z$.

We can turn a poset into a category. Let $Obj(\mathcal{C}_S) = S$ and

$$\operatorname{Hom}_{\mathcal{C}_S}(X,Y) = \begin{cases} \{\operatorname{unique morphism}\} & x \leq y \\ \varnothing & \text{otherwise.} \end{cases}$$